The total should be 60 pt. Q-n 1 is 10 pt and $2 / 2 / 3 / 3$
1.
a. $z_{\alpha / 2}=2.81$ implies that $\alpha / 2=1-\Phi(2.81)=.0025$, so $\alpha=.005$ and the confidence level is $100(1-\alpha) \%=$ 99.5%.
b. $z_{\alpha / 2}=1.44$ implies that $\alpha=2[1-\Phi(1.44)]=.15$, and the confidence level is $100(1-\alpha) \%=85 \%$.
c. 99.7% confidence implies that $\alpha=.003, \alpha / 2=.0015$, and $z_{.0015}=2.96$. (Look for cumulative area equal to $1-.0015=.9985$ in the main body of table A. 3 .) Or, just use $z \approx 3$ by the empirical rule.
d. 75% confidence implies $\alpha=.25, \alpha / 2=.125$, and $z_{125}=1.15$.

Q-n 2 is 10 pt and 5/5
2.
a. The sample mean is the center of the interval, so $\bar{x}=\frac{114.4+115.6}{2}=115$.
b. The interval $(114.4,115.6)$ has the 90% confidence level. The higher confidence level will produce a wider interval.

Q-n 13 is 10 pt and 5/5.
13.
a. $\bar{x} \pm z_{.025} \frac{s}{\sqrt{n}}=654.16 \pm 1.96 \frac{164.43}{\sqrt{50}}=(608.58,699.74)$. We are 95% confident that the true average CO_{2} level in this population of homes with gas cooking appliances is between 608.58 ppm and 699.74 ppm
b. $\quad w=50=\frac{2(1.96)(175)}{\sqrt{n}} \Rightarrow \sqrt{n}=\frac{2(1.96)(175)}{50}=13.72 \Rightarrow n=(13.72)^{2}=188.24$, which rounds up to 189.

Q-n 19 is 10 pt .
19. $\hat{p}=\frac{201}{356}=.5646$; We calculate a 95% confidence interval for the proportion of all dies that pass the probe: $\frac{.5646+\frac{(1.96)^{2}}{2(356)} \pm 1.96 \sqrt{\frac{(.5646)(.4354)}{356}+\frac{(1.96)^{2}}{4(356)^{2}}}}{1+\frac{(1.96)^{2}}{356}}=\frac{.5700 \pm .0518}{1.01079}=(.513, .615)$. The simpler CI formula
(7.11) gives $.5646 \pm 1.96 \sqrt{\frac{.5646(.4354)}{356}}=(.513, .616)$, which is almost identical.

Q-n 29 is 10 pt and $1 / 1 / 2 / 2 / 2 / 2$
29.
a. $\quad t_{025,10}=2.228$
b. $\quad t_{.025,20}=2.086$
c. $t_{.005,20}=2.845$
d. $t_{.005,50}=2.678$
e. $t_{01,25}=2.485$
f. $-t_{.025,5}=-2.571$

Q-n 32 is 10 pt
32. We have $n=20, \bar{x}=1584$, and $s=607$; the critical value is $t_{.005,20-1}=t_{.005,19}=2.861$. The resulting $99 \% \mathrm{CI}$ for μ is

$$
1584 \pm 2.861 \frac{607}{\sqrt{20}}=1584 \pm 388.3=(1195.7,1972.3)
$$

We are 99% confident that the true average number of cycles required to break this type of condom is between 1195.7 cycles and 1972.3 cycles.

